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COMPRESSIVE STRENGTH OF FIBER REINFORCED

COMPOSITE MATERIALS

John G. Davis, Jr.
NASA-Langley Research Center

Hampton, Virginia

ABSTRACT: Results of an experimental and analytical investigation of the

compressive strength of unidirectional boron-epoxy composite 
material are

presented. Observation of fiber coordinates in a boron-epoxy composite

indicates that the fibers contain initial curvature. Combined axial com-

pression and torsion tests were conducted on boron-epoxy tubes 
and it was

shown that the shear modulus is a function of axial compressive stress. An

analytical model which includes initial curvature in the fibers and 
permits

an estimate of the effect of curvature on compressive strength is proposed.

Two modes of failure which may result from the application of axial compres-

sive stress are analyzed, delamination and shear instability. Based on tests

and analysis failure of boron-epoxy under axial compressive load is due to

shear instability.

KEY WORDS: Composite materials, boron-s-oxy, compresstive strength, shear

strength, shear modulus

INTRODUCTION

The behavior of unidirectionally fiber-reinforced composite materials

whet subjected to an axial compressive loading parallel to the fibers has

been investigated both analytically and experimentally during the past

decade. At the beginning of the study reported herein, an indepth review

of the literature was conducted [1)] and the following was evident:



(1) A unified theory for predicting compressive strength did not exist.

(2) Data tended to support three possible modes of failure, delamination,

microbuckling of the fiber, and fiber-matrix separation followed by micro-

buckling of the fiber. (3) A direct relationship between compressive strength

and interlaminar shear strength had been noted for some materials. Study of

these points led to postulation of an analytical model which allows micro-

buckling or delamination as potential failure modes and provided an explanation

for the relationship between interlaminar shear and compressive strength. The

model, analyses, and experiments performed to correlate the model with the

behavior of boron-epoxy are discussed in the remaining portion of this paper.

SYMBOLS

Am cross sectional area of the mt h layer

ao  amplitude of initial displacement, see figure 2.

b width of beam

Em Young's modulus of the mth layer

Fi first moment of area of the it h layr ibout th midplanc

G shear modulus of the composite

Gi shear modulus of the it h layer

G apparent shear modulus of composite

hi thickness of the ith layer

Im  moment of inertia of the mt h layer about the midplane

L length of laminate

n total number of layers above the midplane

Pf applied compressive load on the fiber layer
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Pm applied compressive load on the matrix or mt h layer

P external shear load
x

P external transverse loadz

P applied compressive load on a beam

thP load vector at the p node
-P

R ,S ,T submatrices that form part of the finite difference equations

U the change in strain energy in going from the initial position

to the buckled position

Vi  volume fraction of the it h layer

W work done by the applied load in going from the initial

position to the buckled position

wO initial transverse displacement of the laminate

w 1  transverse displacement of the laminate due to bending and

shear loads

w total transverse displacement of the laminate

x,y,z coordinates

Y so.lution vecto r the th d point along. the bea
-P

Yi shear strain if the it h layer eof a multilayered media

6 displacement of ~,he applied axial force in going from the

initial position to the buckled position

ei  angle between the z axis and the initial position of the

cross section of the it h layer

ac compressive stress
c

Gcr applied compressive stress at which shear instability occurs

th
Ti  shear stress in the i layer

T interlaminar shear stress above the mth layer and acting
m,m

on the mt h layer
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defined by ~i - 6i)

angle between the z axis and the final position of the

deformed cross section of the it h layer

ANALYTICAL MODEL

The model postulated herein is compared with the one used by Rosen [2]

in figure 1. Each model is built-up from a series of hard and soft laminae.

Rosen assumed that the laminae were initially straight and predicted two

buckling modes, extension and shear. The advantages of the Rosen model are

that strength is related to the matrix properties and the resulting equations

are easy to use. As for disadvantages, predicted values are usually much

larger than experimental measurements, fiber geometry is not taken into

account and nonlinear behavior of the matrix is neglected.

The present model permits the laminae to contain initial curvature. As

a consequence, under an increasing axial load the laminae undergo lateral

deflection which induces interlaminar shear stress and may result in failure

by delamination i.e., some of the early graphite-epoxy liinates. The

second mode of failure considered is shear instability of the laminae. If

the matrix material behaves in a nonlinear manner, the induced interlaminar

shear stresses will cause the shear modulus of the composite to decrease and,

correspondingly, the axial compressive stress at which shear instability

occurs will decrease. Important features of the present model include:

(1) strength is related to constituent properties and geometry. (Both the

fiber and matrix properties are taken into account. Filament size, initial

curvature and collimation are reflected in the value of a and L.)
0

(2) An explanation for the relation between compressive and interlaminar



shear strengths is offered. (3) A decrease in shear modulus with increasing

applied axial load is explained. The major disadvantage of the model is

that it contains only two dimensions whereas the filamentary composite is a

three dimensional material.

ANALYSIS

A brief description of the analysis utilized to predict interlaminar

shear stress and shear instability in the analytical model follows. Complete

derivations are presented in reference 1.

Intuaamna Shear Stress

A repeating element which consists of one fiber layer and two half

layers of matrix material was analyzed as a multilayered Timoshenko beam

loaded in axial compression (see figure 2). Each layer in the beam contains

an initial transverse deflection, w0 , which can be re rescnted by a sine

wave. Both bending and shearing deformations are permitted in each layer.

Since the beam represents a repeating element, the ?horizontal displacement,

u, due to bending and shearing must vanish along the z-per and lower surfaces

in order to satisfy continuity of displacements. Subdividing the beam into

2n layers, taking into account symmetry about the midplane and applying the

equations of equilibrium to each layer leads to the set of governing differ-

ential equations for the problem. Summation of moments yields:
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m i-1
C [Ei(I - Fih )( - ) + EF (k+l - k)(

i=1 k=l

m
- E GiAi(p. - i +w) + h Px/2

i=1

(1)
n i-i

+ h i [E,(F i. A.ih)( - '') + E.A. E (
i-m+ I k=1

- h )(K - ek)] = o

Summation of vertical forces yields:

n n
E G Aiw" + E G.A.i ( I - el) + P/2 - Pv" (2)

i=l i=1l

Continuity of displacements provides the remaining governing equation.

1h2+ 2(h - h2 ) + ... +n(hn+l - h) = 0 (3)

Expressing the derivatives of i, ei, i, and w in ter s of finite

differences, dividing the beam into J intervals, -d a.p.ying fixed-end

boundary conditions permits one to transform equations (1) through (3)

into the following set of matrix equations.

S Z 0 0 0 . .

S0 R S T Y P

0 0 R - - -1 -i-1 J -l -1 - Yj L- 1
O 0 R S Y P
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th
Considering the k. node along the beam, the solution vector Y includes

the rotation i of each layer, the transverse deflection wv and the

interlaminar shear stress which acts on the outer layers.

A computer program which utilizes the tridiagonal method of solution and

had been written earlier by Swift [3] was modified to solve equations (4).

The computer program increments the loading and adjusts the coefficient

matrices as the loading is increased to account for nonlinear shear stress-

strain behavior in the layers.

After the solution vectors are computed, interlaminar shear stresses

may be computed by the following equation.

m i-i
T Z E [Ei( I  F.h.)( " - e'.') + E.F E (h
m,m bhm+ i i i i k= +

(5)
m

- hk) e N")] - Z [GiA ( -i w)k i=1 1 1

Equation (5) can be used to compute interlaminar shear stresses as a function

of applied axial compressive stress. If the value of T computed with
mm

equation (5) equals or exceeds the interlaminar shear strength of the

composite material, failure will occur by delamination.

It will be shown herein that the axial compressive stress at which

shear instability occurs is dependent on the shear modulus of each layer in

the beam. The average shear stress in each layer can be computed as a

function of axial compressive stress using the following equation

E

ave m,m 3 m+1 (h -h )2 m m-

(6)
E m-1

+ A(h -h) E (hi+1 - h )(3 ' --e )
2 m+l m = i)
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Using values of shear stress computed by equation (6) and the shear stress

strain curves for each material in the composite, the shear modulus of each

layer can be computed as a function of axial compressive stress for subse-

quent use in the stability analysis.

Shect Stability

Figure 3 shows a segment of the multilayered beam used to represent the

composite material. The length to width ratio of each layer is assumed to

be small and thus bending is precluded. The magnitude of the applied end

loads is such that a uniform axial strain is imposed. The repeating element

is assumed to be symmetric about its ~nidplane and compatibility of displace-

ments along the boundaries is imposed. As a result, the average vertical

displacement at the upper ends of the +nt h and -n t h layers will equal the

displacement at the midplane of the repeating element. For convenience, the

applied axial loads are replaced by a single load acting at the midplane of

the repeating element.

The axial load which initiates shear buckling, may be calculated using

an energy analysis, as indicated by Foye [4]. Referring to figure 3, it is

noted that the work done by the external forces in going from the initial

position to the buckled position is

w = P6 (7)

Noting

6 = (1- cos w.).dx and cos w :  ,1- w'2/2
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equation (7) becomes

W = P 2 dx/2 (8)

Since bending is precluded, the change in strain energy in going from the

initial position to the buckled position is due only to shearing stresses

and is given by

n
U = E T Ai dx (9)

i=1

Expressing shear stress and strain in terms of displacement and rotations,

equation (9) becomes

n
U= E GiA (i + w) 2 dx (10)

i=l

Equating W and U leads to

2 n2
Pwl = 2 i ( i 

+  )2 (11)
i=1

Equation (11), plus the following equation, which imposes continuity of

displacements along the vertical edges of the repeating element, are

the governing equations for predicting shear instability.

n
E Ai i = 0 (12)

i=1
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The minimum value of axial compressive load, P, which satisfies the governing

equations can be determined using the method of Lagrange multipliers. Further,

noting the relationship between axial load and stress and the definition

of volume fractions, V., leads to the following equation for predicting the

axial compression stress at which shear buckling occurs.

GIG2 ... GGG n 
(13)cr V G .. G + V G G ... G + .. + VnG ... G (13)12 n 213 n nl n-i

Shear moduli values substituted into equation (13) should be those correspond-

ing to the average shear stresses induced by axial compression and calculated

with equation (6). Neglecting to take into account the induced shear

stresses and the corresponding reduction in shear modulus, equation (13)

would predict the same value of axial stress for shear instability as given

by Rosen [1] and Foye [)].

EXPERIMENT AND RESULTS

ibeAr Cwvature

The analytical model postulated herein is based on the assumption that

the reinforcing fibers contain initial curvature. In order to verify that

assumption, the coordinates of five arbitrarily selected fibers in a boron-epoxy

laminate were measured (see figure 4). A 1.27 cm (0.50 in.) wide strip

was machined from the central portion of a 15.24 cm (6.00 in.) wide by 10.16

cm (4.00 in.) long twelve ply laminate. The fibers were aligned in the length
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direction of the strip. The strip was sliced into nominally 2.50 mm (0.10

in.) long coupons. Each slice across the strip removed approximately 1.78 mm

(0.070 in.) of material. Thus the front faces of successive coupons were

spaced at approximately 4.28 mm (0.170 in.) intervals. The length of each

coupon was measured with a micrometer and the coordinates of the five fibers

labeled in figure 4 were measured with a tool makers microscope.

Figure 5 shows typical results obtained from 22 cross sections along the

length of the strip. Examination of the results for all fibers indicates:

(1) Variation in the x coordinate was larger than in the y coordinate.

(2) The fiber is skewed with respect to the z axis. (3) The fiber is

essentially parallel to the x-z plane. (4) The fiber exhibits waviness

along its length. Item (4) is perhaps the most important since it leads to

the development of shear stresses when the fiber is compressed in the axial

direction. As discussed earlier herein, the induced shear stresses can

cause the composite to delaminate or reduce the shear modulus of the composite

sufficiently to cause failure by shear instability.

Displacements ranging from 15.24 to 30.48 'm (0.0006 to 0.0012 in.)

over a span of 0.864 cm (0.34 in.) were measu eid in the five fibers. Due to

the irregular wave shape along each fiber, no attempt was made to express

the displacement by a mathematical function. However, if segments of fibers

are examined and the displacement equation shown in figure 2 is used, values

of a0/L required to fit the deflection range approximately from 0.0009 to

.001875. As will be shown later herein, these deflections are sufficient to

considerably influence the axial compressive strength.
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Combined Comp)Lseion and ToUion Test

In order to determine the influence of compressive stress on shear

modulus, boron fiber uniaxially reinforced epoxy tubes were subjected to

combined axial compression and torsion tests using the apparatus shown in

figure 6. The specimen was mounted in series with a load cell and supported

by a thrust bearing assembly. Compressive loading was applied by raising the

lower platen, whereas torque was applied by attaching weights on two strings

which connected to the moment arms. Magnitude of the applied torque was

determined by measuring rotation of the lower end of the load cell with

respect to the upper end. This rotation was measured with two direct current

differential transformers (DCDT's). Diametrically opposite strain gage

rosettes and a single strain gage located midway between the two rosettes

were attached to the middle of the specimen.

Figure 7 shows shear stress-strain curves that were developed. During

each test the axial stress was held constant at.a predetermined value.

The curves indicate that the initial slope which is equal to the apparent

shear modulus (G - a) decreases as the axial compressive stress increases.

The initial slope of each curve shown in figure 7 is plotted as a function

of applied compressive stress in figure 8. If the shear modulus of the

composite, G, is assumed to be independent of axial compressive stress, the

dashed curve represents the predicted behavior for the apparent shear modulus.

Except for low values of compressive stress, the experimentally determined

values of apparent shear modulus are less than those predicted by the dashed

line. The difference increases with increasing values of compressive stress

and thus indicates that shear modulus of the composite decreases with

12



increasing applied compressive stress. A curve, which intersects the

abscissa at the highest compressive strength for boron-epoxy known to the

author, has been drawn through the data. Based on the data shown it appears

that the maximum compressive strength of boron-epoxy is limited by shear

instability which occurs when the apparent shear modulus equals zero.

COMPARISON OF EXPERIMENT AND THEORY

Results from the combined compression and torsion tests were compared

with computed results based on the interlaminar shear stress analysis. The

boron-epoxy composite was modeled as shown in figure 9. The nonlinear

shear stress-strain response of the epoxy matrix was calculated using the

experimentally determined shear stress-strain curve for a boron-epoxy tube

and assuming a stiffness in series model. Four values of initial deflection

amplitude, ao, were selected for use in the computations. The resulting

values of a /L extended over the range of experimentally determined values

reported herein.

A comparison of the experiment". ' Ita sn cr'r"ted results is shown in

figure 10. Examination of the figur: and computations indicates: (1) Computed

curves of apparent shear modulus as a -^unction of a~ial compressive stress,

based on assumed initial deflections corresponding to ao/L equal to 0.001875

and 0.003750, bound the data reasonably well. (2) These values of a o/L are

of the same order of magnitude as the measured deflections reported herein.

(3) Small initial deflections, 0.001875 < a /L < 0.003750, reduce the axial- o

compressive stress at which shear instability is predicted to occur from

approximately 9.308 GPa (1350 ksi) to the range of 2.758 to 3.792 GPa

(400 to 550 ksi). (4) Within the region bounded by 0.001875 < a/L < 0.00375,

13



the maximum computed interlaminar shear stress was approximately 75.842 MPa

(11,000 psi) which is less than the interlaminar shear strength of Ehe boron-

epoxy composite and indicates that failure was due to shear instability and

not due to delamination. (5) Neglecting initial curvature in the fibers

(assuming ao/L = 0) as assumed in references [1] and r4], leads to a predicted

value of compressive strength which is significantly higher than the experi-

mentally determined value.

CONCLUSIONS

Experimental evidence that the fibers in a boron-epoxy composite contain

initial curvature and that the shear modulus is a function of axial compres-

sive stress was obtained. An analytical model which includes initial curva-

ture in the fibers and which can be used to explain the observed behavior has

been proposed. Two modes of failure, delamination and shear instability, were

analyzed. Based on the test results and analysis, failure of the boron-epoxy

under axial compressive loading is due to shear instability.
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ROSEN'S MODEL
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MATRIX

SHEAR BUCKLING EXTENSION BUCKLING
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MATRIX

SHEAR BUCKLING DELAMINATION

Figure i.- Analytical model of fiber reinforced composite material.
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Figure 8.- Effect of compressive stress on the shear modulus of boron-epoxy.
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Figure 9.- Model used to simulate boron-epoxy in the stress analysis.
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Figure 10.- Comparison of measured and predicted values

of apparent shear modulus.




